

MMGaiaDN Tech Workshop: Summary and Next Steps

Nicholas Walton & Thomas Hajnik

Institute of Astronomy, University of Cambridge

Airbus Space SSA/Gaia/DPAC

Block 1: MWGaia Doctoral Network: Status and Updates

Anthony Brown

- Network approx. at half-way point in terms of funding
- MWGaiaDN focused on Gaia Science and technical challenges for Gaia NIR
- Projects: MW (Mass-loss rates for RGB stars, kinematics, stell. characterisation, Exoplanet populations, Extinction Maps, L/SMG), extragal (Binary SMBH detection, Astrometric Quality of DR3 Quasars), Antone Investigation of rel. effects on high accuracy astrometry

Antonella Vallenari

- Publication/Outreach: Network presented at EAS 2024 & 2025
 - Science talks by multiple PhD candidates within MWGaiaDN

Despina Hatzidimitriou

Outreach Event planned close to Gaia DR4 release (schools across Europe)

Action: Incorporate GaiaNIR concept in to plans for 'Gaia Map' event planning

Block 2: GaiaNIR: Overview and Status / Other existing and upcoming astrometry missions

Science Case Gaia NIR:

David Hobbs

- Probe hidden regions. Up to 75% of MW stars could be mapped
- More precise proper motions by combining with Gaia precison ~ nas/yr
- Resetting the Gaia optical Reference Frame
- Low res. Dispersion spectra for most of the stars
- RV spectrograph for maybe 1 billion objects
- Exoplanets with periods up to 40 yrs
- Read-noise key in determining if GaiaNIR can outperform Gaia

JASMINE:

Ryouhei Kano

- Astrometry in gal. Nuclear region (1 kpc form centre / within 4kpc) --> 10⁴ stars
- Transit obs. Around mid M type stars (aiming for earth-analogues)
- MDR passed in 2024/07 -> planned launch 2032
- Building interactions with the European community (Science, Data, Downlink).

Block 2: GaiaNIR: Overview and Status / Other existing and upcoming astrometry missions

Gaia's key impacts:

Action: Messaging: GaiaNIR gives the map of every component of the MW

High-precision sky atlas

Enables detailed maps, including Kuiper Belt object outlines via occultation.

Anthony Brown

Accessible, vast dataset

Provides the community with easy access to an extensive and rich dataset.

Dense astrophysical sampling

 Offers detailed CMD and phase space coverage (e.g., WD crystallization, Gaia-Enceladus merger, disc perturbations).

Stellar and Galactic insights

 Delivers astrophysical parameters for many sources, informing studies of the Milky Way's oldest populations and disc dynamics.

Survey calibration and time series

 Calibrates past/future surveys with a precise stellar reference frame; DR4 will include time series of astrometry, photometry, and spectra.

Block 3: MWGaiaDN/ Industry Forum and Discussion

Luis Venancio

Gaizka Murga Llano

Joan-Manel Casalta

Strong mission requirements

Ensure requirements are valid, clear, consistent, traceable, and realistically achievable.

Science-industry collaboration

 Establish common requirement definitions and maintain good communication between scientists and industry.

Lessons from past missions

Rob Wilson

Learn from cases like Euclid where insufficient requirements led to issues (e.g., stray light, sunshield x-rays, focal plane size).

Detector challenges for GaiaNIR

Minimize noise at high NIR gains, balance sensitivity with array size and TDI length, and keep design margins.
 Action: Inform/ engage with industry. Aim at TechWS#2 late 2026

Plan for evolution and risk

 GaiaNIR should not simply copy Gaia; allow for system evolution, mature key elements early, and have backups for high-risk components.

Block 4: Science Requirement Input to Next Generation Astrometry Missions

David Hobbs

Major technical challenges

Address crowding, high telemetry loads, detector performance (800–2300 nm), and read-noise constraints.
 Action: link with tools being developed in the MWGaiaDN

Spectral and RV improvements

 Justify low-dispersion spectra, improve resolution, and plan for 1 billion radial velocities with slower scans, wider detectors, and lower noise.

Ambition for GaiaNIR

Aim for a large-scale GaiaNIR mission to extend capabilities, especially in near-infrared.

Mock Catalogues

Marie Schölch

 Will help uncertainty estimates using modelling of 3D extinction, G mag etc., resulting in mock Gaia observations

Advance extinction studies

Alejandro Martín Escabia

 Use GaiaNIR to probe obscured regions and combine with optical data for more accurate extinction and 3D R(V) maps.

Block 4: Science Requirement Input to Next Generation Astrometry Missions

Lessons from Gaia:

Action: review how lessons from Gaia might alter how re specifiy key requirements from GaiaNIR (e.g. BAV)

Robin Geyer

Ed Serpell

- Precise spacecraft tracking and synchronization
 - Ensure accurate determination of spacecraft orbit, velocity, and use of good clocks.
- Advanced calibration capability
 - Design systems to support complex calibration procedures and handle technical byproducts from solutions.
- Prepare for surprises
 - Maintain flexibility and readiness to address unexpected issues during the mission.
- Avoid disruptive mode changes
 - Minimize spacecraft mode switches (e.g., instruments, transmitters) to maintain stability.
- Design and testing insights
 - Understand and measure basic angle variations (BAV), isolate the launch adaptor, and account for multi-layer insulation (MLI) rigidity effects.

Block 5: Near-IR astrometry missions: Current and Future technical studies

Detector Tests

Action: detector study outputs early 2026 → update GaiaNIR models

Nicholas Walton

 Mid-term study review Aug 2025. Currently Leonardo APDs looking very promising

Metrology lessons from Theia/HWO

Fabien Malbet

- CMOS 46MP Gigapyx viable for high-precision astrometry
- Lab tests approaching spec; test bench operational
- Fringes & modulation measured; pixel calibration pending
- Optical correction ~10⁻² pixel level, aiming for 10⁻⁴
- GaiaNIR similar process, different detector materials

Block 5: Near-IR astrometry missions: Current and Future technical studies

RV's for GaiaNIR:

Action: define RV window(s) and abundances/based on updated requirements -> WG activity

Szabolcs Mészáros

- Synthetic tests: 20,000 spectra with random Teff, log g, [M/H], vrad, SNR
- Optimal wavelength: 1910–2010 nm (strong Fe, Ca lines across parameter space)
- Backup options: 1430–1530 nm; other candidates between 1200–1600 nm
- Further analysis: 1 nm step, finer spectral sampling from 1200–2100 nm
- Additional potential: evaluate Teff, log g, [M/H], abundances in optimal range

Deutsches Zentrum für Astrophysik

Martin Roth

- Large new lab for detector development
- Provide significant know-how for next generation ground/space based telescopes

Block 6: Roadmap for Next Generation

Astrometry

Action: preparation for early proposal for mission selection

Voyage 2050 timeline

L4 mission/concept CDF likely 2026 -> launch 2043

Nic Walton

- L5 science & mission development to commence 2027
 -> mission selection 2028/2029
- We need to ramp up communication efforts!

Building the GaiaNIR community (<u>www.gaianir.org</u>)

David Hobbs

- GaiaNIR working groups need to be established/enlarged
- Consortium needs to be in place next year
- Co-I's must actively engage with the funding agencies and SPC representatives
- Codebase needs to be accessible and allow for development flexibility as well as adhering to ESA standards (learn from Vera Rubin etc.)
- Bluesky handle secured (gaianir.bsky.social) for the cost of one beer, thanks to Paul!

Action: website and communications campaign from q4/25

Next Steps

Workshop brief report with list of actions

Thanks to all for their input and contributions!